KAPASITAS GESER BALOK BETON BERTULANG DAN BALOK BETON FLY ASH SEBAGAI BAHAN PENGGANTI SEMEN
Kata Kunci:
Balok, BetonSinopsis
Buku monograf ini berisi penggunaan fly ash sebagai bahan pengganti semen dalam pembuatan balok beton bertulang. Balok beton fly ash selanjutnya dilakukan pengujian lapangan untuk mengetahui kapasitas geser, kemudian dibandingkan dengan balok beton bertulang konvensional. Pengujian lapangan menggunakan Metode Ohno Four Bending untuk balok dengan Sengkang dan Metode Three Point Bending untuk balok tanpa Sengkang. Terdapat perbedaan teoritis perhitungan geser balok dengan hasil pengujian lapangan. Pemaparan mengenai lebar dan pola retak masing – masing balok juga terdapat dalam buku ini. Buku ini dapat digunakan sebagai referensi mengenai material fly ash, macam – macam pengujian material beton, perhitungan geser teoritis balok konvensional dan balok tinggi, serta pengujian lapangan balok konvensional dan balok tinggi.
Bab
-
KATA PENGANTAR
-
DAFTAR ISI
-
DAFTAR GAMBAR
-
DAFTAR TABEL
-
BAB 1 PENDAHULUAN
-
BAB 2 KAPASITAS GESER PADA BETON CAMPURAN FLY ASH SEBAGAI BAHAN SUPLLEMENTARY
-
BAB 3 SKEMA PENGUJIAN GESER BALOK BETON BERTULANG
-
BAB 4 PERBANDINGAN KAPASITAS GESER BALOK KONVENSIONAL DAN BALOK TINGGI
-
DAFTAR PUSTAKA
-
PROFIL PENYUSUN
Downloads
Referensi
Afrani, I., and Rogers, C. (1994). The Effect of Different Cementing Materials and Curing on Concrete Scalling. Cement, Concrete, and Aggregates. Vol. 16 (2) pages 132 to 139.
American Coal Ash Association. (2013). Fly Ash Facts for Highway Engineers. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004
Arezoumandi, M., Volz, J., & Myers, J. (2013). Effect of high-volume fly ash on shear strength of concrete beams. Transportation Research Record, 2342, 1–9. https://doi.org/10.3141/2342-01
ASTM C618 - 03. (2010). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use West Conshohocken, PA, 2001. Annual Book of ASTM Standards, C, 3–6.
Bamfort, P. B. (1980). In-Situ Measurement of the Effect of Partial Portland Cement Replacement Using Either Fly Ash or Ground-Granulated Blastfurnace Slag on the Performance of Mass Concrete. Proceedings of the Institution of Civil Engineers. Part 2, Vol. 69, pages 777 to 800.
Bouzoubaa, N., Tamtsia, B., Zhang, M.H., Chevrier, R. L., Bilodeau, A., and Malhotra V. M. (2006). Carbonation of Concrete Incoporating High Volumes of Fly Ash. Proceedings of the Seventh CANMET/ACI International Conference on the Durability of Concrete. ACI SP-234, American Concrete Institute, Farmington Hills, MI. pages 283 to 304.
CAN/CSA A3001-03. (2003). Cementitious Materials for Use in Concrete. Canadian Standards Association, Toronto. 318 pages.
Cavagnis, F., Ruiz, M. F., & Muttoni, A. (2015). Shear failures in reinforced concrete members without transverse reinforcement: An analysis of the critical shear crack development on the basis of test results. 103, 157–173.
Cook, W., & Mitchell, D. (1991). Design of Disturb Conception des zones Bemessung von Diskon. IABSE Surveys.
French, R., Maher, E., Smith, M., Stone, M., Kim, J., & Krauthammer, T. (2017). Direct shear behavior in concrete materials. International Journal of Impact Engineering, 108, 89–100. https://doi.org/10.1016/j.ijimpeng.2017.03.027
Gebler, S.H., and Klieger, P. (1986). Effect of Fly Ash on the Durability of Air-Entrained Concrete. Proceedings of the 2nd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. ACI SP-91, Vol.1 American Concrete Institute, Farmington Hills, MI, pages 483 to 519.
Hart, A. J. R., Ryell, J., and Thomas, M. D. A. (1997). High Performance Concrete in Precast Concrete Tunnel Linings, Meeting Chloride Diffusion and Permeability Requirements. Proceedings of the PCI/FHWA International Symposium on High Performance Concrete. pages 294 to 307.
Hunegnaw, C. B., & Aure, T. W. (2021). Effect of orientation of stirrups in combination with shear span to depth ratio on shear capacity of RC beams. Heliyon, 7(10), e08193. https://doi.org/10.1016/j.heliyon.2021.e08193
Imran, I., Zulkifli, E. (2014). Peerencanaan Dasar Struktur Beton Bertulang. Penerbit ITB, Jalan Ganesha 10 Bandung. ISBN 978-602-9056-73-0
Jeff Allen, Veronica Madera, Daniel Mares, and J. S. (2017). Design and Construction Considerations for Hydraulic Structures Roller-Compacted Concrete Second Edition. Roller Compacted Concrete, 2, 258. https://www.usbr.gov/tsc/techreferences/mands/mands-pdfs/RCCManualFinal09-2017-508.pdf
Johnston, C. (1987). Effects of Microsilica and Class C Fly Ash on Resistance of Concrete to Rapid Freezing and Thawing and Scaling in The Presence of Deicing Agents. Concrete Durability, ACI SP-100. Vol. 2 pages 1183 to 1204.
Kong, F.K., Chemrouk, M. (2002). Reinforced Concrete Deep Beams (F. . Kong (ed.); First Edit). Taylor and Francis Books,Inc. https://doi.org/Library of Congress in Publication Data
Lane, R. O., and Best, J. F. (1982). Properties and Use of Fly Ash in Portland Cement Concrete. Concrete International, Vol. 4, No. 7. pages 81 to 92.
Langley, W.S., Carette, G. C., and Malhotra, V. M. (1992). Strength Development and Termperature Rise in Large Concrete Blocks Containing High Volumes of Low-Calcium (ASTM Class F) Fly Ash. ACI Materials Journal, Vol. 89, No. 4 pages 362 to 368.
Malhotra, V. M., and Mehta, P. K. (2005). High-Performance, High-Volume Fly Ash Concrete. Supplementary Materials for Sustainable Development Inc., Ottawa, Canada. 124 pages.
Meng, D., Lee, C. K., & Zhang, Y. X. (2017). Flexural and shear behaviours of plain and reinforced polyvinyl alcohol-engineered cementitious composite beams. Engineering Structures, 151, 261–272. https://doi.org/10.1016/j.engstruct.2017.08.036
Mooy, M. (2020). Studi Eksperimental Pengaruh Pre-Crack Pada Kapasitas Geser Balok Terkorosi Menggunakan Engineered Cementitious Composite. Tesis Institut Teknologi Sepuluh Nopember.
Naik, T. R., Ramme, B. R., Kraus, R. N., and Siddique, R. (2003). Long-Term Performance of High-Volume Fly Ash Concrete Pavements. ACI Materials Journal. Vo. 100, No. 2. pages 150 to 155.
Paegle, I., & Fischer, G. (2016). Phenomenological interpretation of the shear behavior of reinforced Engineered Cementitious Composite beams. Cement and Concrete Composites, 73, 213–225. https://doi.org/10.1016/j.cemconcomp.2016.07.018
Patil, S. S., & Baghban, O. R. (2018). Comparison of experimental strength of R . C . Deep beams Design by Various Country Codes with Respect to Deep Beam with different Percentage of Web Steel. May, 122–126.
Pham, T. T., & Kurihashi, Y. (2023). Impact behavior of no-stirrup Reinforced Concrete Beam with Cushion. Case Studies in Construction Materials, 18(October 2022), e01809. https://doi.org/10.1016/j.cscm.2022.e01809
Sahmaran, M., Anil, O., Lachemi, M., Yildirim, G., Ashour, A. F., & Acar, F. (2015). Effect of Corrosion on Shear Behavior of Reinforced Engineered Cementitious Composite Beams. ACI Structural Journal, 112(January 2016). https://doi.org/10.14359/51687749
Shahnewas, Md., Alam, M. S. (2014). Improved Shear Equations for Steel Fiber-Reinforced Concrete Deep and Slender Beams. ACI Structural Journal, 111, 1–6. https://doi.org/S-2012-400.R3
Shang, Q. (2006). Shear Behaviour of Engineered Cement-based Composites. December, 138. http://scholar.sun.ac.za/handle/10019.1/1885
Tambusay, A., Suryanto, B., & Suprobo, P. (2018). Visualization of Shear Cracks in a Reinforced Concrete Beam using the Digital Visualization of Shear Cracks in a Reinforced Concrete Beam using the Digital Image Correlation. International Journal on Advanced Science Engineering Information Technology, 8, 573–578. https://doi.org/10.18517/ijaseit.8.2.4847
Thomas, B. M., Ph, D., Eng, P., Engineering, C., & Brunswick, N. (n.d.). Thomas M., Optimizing the Use of Fly Ash in Concrete PHD, Eng, P Engineering, Civil Brunswick, New. https://doi.org/10.15680/IJIRSET.2015.0409047
Timms, A. G., and Grieb, W. E. (1956). Use of Fly Ash in Concrete. Proceedings of ASTM. Vo. 56, pages 1139 to 1160.
