HARVARD STEP TEST
Kata Kunci:
harvard step testSinopsis
Tes Harvard Step adalah tes kebugaran jasmani yang dikembangkan oleh Lucien Brouha dan timnya di Harvard University tahun 1943. Tes ini digunakan untuk mengukur tingkat kebugaran kardiovaskular seseorang dengan cara naik turun bangku atau platform dengan irama tertentu. Semakin cepat denyut jantung kembali normal setelah melakukan tes, semakin baik tingkat kebugaran seseorang. Secara klinis, kecepatan pemulihan denyut jantung (heart-rate recovery atau HRR) pada menit pertama hingga ketiga pascates menjadi penanda objektif efisiensi sistem saraf otonom. HRR ≤ 12 denyut per menit pada menit pertama terbukti berkorelasi dengan peningkatan mortalitas kardiovaskular pada populasi dewasa sehat. Harvard Step Test dapat digunakan sebagai model stres submaksimal yang merangsang respons fisiologis terintegrasi pada enam domain utama: (1) kardiovaskular–respirasi, (2) muskuloskeletal, (3) metabolisme energi, (4) neuroendokrin, (5) termoregulasi–cairan, dan (6) imun-inflamasi-molekuler.
Harvard Step Test (HST) merupakan salah satu bentuk uji beban fisik submaksimal yang sederhana namun kaya informasi fisiologis. Dalam waktu singkat, tes ini memicu aktivasi simultan berbagai sistem tubuh: sistem kardiovaskular, respirasi, muskuloskeletal, metabolisme, neuroendokrin, hingga sistem imun dan regulasi cairan tubuh. Pemahaman mendalam tentang bagaimana masing-masing sistem merespons beban ini sangat penting untuk mahasiswa kedokteran agar dapat melihat keterkaitan antara aktivitas fisik dan kesehatan secara menyeluruh.
Secara keseluruhan, HST bukan hanya sekadar alat prediksi VO₂max, tetapi merupakan “mikromodel” stres fisiologis yang sangat aplikatif dalam dunia kedokteran, fisioterapi, kebugaran olahraga, hingga kesehatan masyarakat. Bagi mahasiswa kedokteran, pemahaman tentang fisiologi HST memberikan bekal untuk memahami hubungan dinamis antara sistem tubuh manusia dan aktivitas fisik secara integratif. Pengetahuan ini akan sangat bermanfaat, baik dalam praktik klinis maupun dalam desain intervensi kesehatan yang berbasis bukti.
Bab
-
KATA PENGANTAR
-
DAFTAR ISI
-
DAFTAR GAMBAR
-
DAFTAR TABEL
-
Bab 1 Pengenalan dan Sejarah Harvard Step Test
-
Bab 2 Hubungan Fisiologi Manusia dengan Harvard Step Test
-
Bab 3 Tujuan Harvard Step Test
-
Bab 4 Prosedur dan Skor Harvard Step Test
-
Bab 5 Versi Modifikasi Harvard Step Test
-
Bab 6 Indikasi dan Kontradiksi Harvard Step Test
-
Bab 7 Kelebihan dan Kekurangan Harvard Step Test
-
Bab 8 Pengembangan Metode Harvard Step Test
-
Bab 9 Aplikasi dan Inovasi Modern Harvard Step Test
-
Bab 10 Ekspansi Topik Baru Harvard Step Test
-
RANGKUMAN
-
DAFTAR PUSTAKA
-
PROFIL PENULIS
Downloads
Referensi
1. Kim D, Cho Y, Seo T. Correlation between physical efficiency index using Harvard Step Test and heart rate variation in college students. Journal of Exercise Rehabilitation 2022;18(6):389-394.
2. Effect of a resistance training program on gh, igf-1, lactate and digital level in female swimmers. Journal of Applied Sports Science 2011;1(2):133-139.
3. Katamanova E, Vasilieva L, Kuptsova N, Kodinets I, Kudaeva I, Sal’nikova G. Comprehensive assessment of the health and physical development in martial arts athletes. E3S Web of Conferences 2020;210:17002.
4. Effect of a resistance training program on gh, igf-1, lactate and digital level in female swimmers. Journal of Applied Sports Science 2011;1(2):133-139.
5. Vangrunderbeek H, Delheye P. Stepping from Belgium to the United States and back: the conceptualization and impact of the Harvard Step Test, 1942–2012. Research Quarterly for Exercise and Sport 2013;84(2):186-197.
6. Thukral H, Chatterjee T, Bhattacharyya D, Chatterjee S, Suranjana S, Pal M. Evaluation and assessment of leg muscle activity and fatigue accross two popular step test exercises. Journal Biology of Exercise 2017;13(1):77-89.
7. Pt S, Retharekar S, Kudalkar S. Comparison between incremental shuttle run test and Harvard’s step test on peak exercise performance in healthy males: a cross-sectional study. International Journal of Research in Medical Sciences 2019;7(8):3111.
8. White K, Lu J, Ibrahim Z, Furth P. Modified Harvard Step Testing within a clinic setting enables exercise prescription for cancer survivors. 2020.
9. Huang H, Xie S, Gu X, Xiang B, Zhong Z, Huang P, et al. Higher circulating mir-199a-5p indicates poor aerobic exercise capacity and associates with cardiovascular dysfunction during chronic exposure to high altitude. Frontiers in Physiology 2021;12.
10. Hanifah R, Mohamed M, Jaafar Z, Mohsein N, Jalaludin M, Majid H, et al. The correlates of body composition with heart rate recovery after step test: an exploratory study of Malaysian adolescents. Plos One 2013;8(12).
11. Anbazhagan S, Ramesh N, Surekha A, Fathima F. Estimation of work capacity and work ability among plantation workers in South India. Indian Journal of Occupational and Environmental Medicine 2016;20(2):79.
12. Physical fitness among doctors working in a tertiary care teaching hospital. International Journal of Physiology 2020.
13. Domaradzki J, Koźlenia D, Popowczak M. The relative importance of age at peak height velocity and fat mass index in high-intensity interval training effect on cardiorespiratory fitness in adolescents: a randomized controlled trial. Children 2022;9(10):1554.
14. Shafiq M, Obaid S, Imtiaz I, Nawaz S, Nadeem K, Iqbal T, et al. Effect of aerobic exercise on rehabilitation of autistic child. PJMHS 2022;16(9):498-500.
15. Burnstein B, Steele R, Shrier I. Reliability of fitness tests using methods and time periods common in sport and occupational management. Journal of Athletic Training 2011;46(5):505-513.
16. Youm C, Shin J, Lee J, Seo K. Effects of localized muscle fatigue and whole body fatigue on postural control during single-leg stance. Korean Journal of Sport Biomechanics 2014;24(2):111-119.
17. Lee H, Roh H, Kim Y. Cardiorespiratory endurance evaluation using heart rate analysis during ski simulator exercise and the Harvard Step Test in elementary school students. Journal of Physical Therapy Science 2016;28(2):641-645.
18. Kim D, Cho Y, Seo T. Correlation between physical efficiency index using Harvard Step Test and heart rate variation in college students. Journal of Exercise Rehabilitation 2022;18(6):389-394.
19. Zakiuddin M, Saha S, Khalid Z. A cross sectional study of physical fitness index using modified Harvard Step Test in relation with body mass index in medical students (1st year mbbs) in major s.d. singh medical college, farrukhabad, u. p, india. Journal of Evolution of Medical and Dental Sciences 2016;5(42):2621-2624.
20. Sudrajat A, Lestari C, Istarofah L. Hubungan kadar hemoglobin dengan ketahanan kardiorespirasi pada anak sekolah dasar. Arteri Jurnal Ilmu Kesehatan 2022;3(2):51-57.
21. Ismail W. Evaluating the validity and reliability of Harvard Step Test to predict VO2max in terms of the step height according to the knee joint angle. Journal of Applied Sports Science 2011;1(2):126-132.
22. Bandyopadhyay A. Queen's college step test as an alternative of Harvard Step Test in young Indian women. International Journal of Sport and Health Science 2008;6:15-20.
23. Siuta J. Polish norms for the Harvard group scale of hypnotic susceptibility, form A. International Journal of Clinical and Experimental Hypnosis 2010;58(4):433-443.
24. Vangrunderbeek H, Delheye P. Stepping from Belgium to the United States and back: the conceptualization and impact of the Harvard Step Test, 1942–2012. Res Q Exerc Sport. 2013;84(2):186–197
25. Hanifah R, Mohamed M, Jaafar Z, Mohsein N, Jalaludin M, Majid H, et al. The correlates of body composition with heart rate recovery after step test: an exploratory study of Malaysian adolescents. PLoS One. 2013;8(12):e82893.
26. Weisstaub G, Tapia P, Contreras A, Ramos R, Peña M, Marshall G, et al. Heart-rate recovery after submaximal exercise predicts cardiovascular mortality in adults. Sci Rep. 2025;15:592.
27. Kim D, Cho Y, Seo T. Correlation between physical efficiency index using Harvard Step Test and heart rate variation in college students. J Exerc Rehabil. 2022;18(6):389–394.
28. Burnstein BD, Steele RJ, Shrier I. Reliability of fitness tests using methods and time periods common in sport and occupational management. J Athl Train. 2011;46(5):505–513.
29. West JB, Watson RR, Fu Z. The human lung: did evolution get it wrong? Eur Respir J. 2007;29(1):11–17.
30. Whipp BJ, Davis JA, Torres F, Wasserman K. A test to determine parameters of aerobic function during exercise. J Appl Physiol. 1981;50(1):217–221.
31. Sampaio S, Félix A, Gonçalves R, Figueiredo J, Monteiro AM. StepTest4all: validation of a three-minute step protocol and web calculator to predict maximal oxygen uptake in adults. J Funct Morphol Kinesiol. 2024;9(1):30.
32. Duclos M, Corcuff JB, Rashedi M, Fougere V, Manier G. Trained versus untrained men: different immediate post-exercise responses of pituitary-adrenal axis. Eur J Appl Physiol Occup Physiol. 1997;75(6):500–504.
33. Michael S, Graham KS, Davis GM. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—a review. Front Physiol. 2017;8:301.
34. Sawka MN, Young AJ, Pandolf KB, Dennis RC, Valeri CR. Erythrocyte, plasma, and blood volume of healthy young men. Med Sci Sports Exerc. 1992;24(4):447–453.
35. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–1406.
36. Liu Y, Yan T, Lu X, Wang H, Zhang Y. The effect of aerobic exercise on miRNA expression and its implication in cardiovascular diseases: a systematic review. Front Cardiovasc Med. 2022;9:902648.
37. Benarroch EE. The central autonomic network: functional organization and clinical correlations. Mayo Clin Proc. 1993;68(10):988–1001.
38. Katz AM. Physiology of the Heart. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.
39. Warburton DER, Haykowsky MJ, Quinney HA, Humen DP. Blood volume expansion and cardiorespiratory function: an update. Sports Med. 2004;34(3):185–212.
40. MacDougall JD, Wenger HA, Green HJ. Physiological Testing of the High-Performance Athlete. Champaign: Human Kinetics; 1991.
41. Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev. 2017;97(2):495–528.
42. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Principles of Exercise Testing and Interpretation. 6th ed. Philadelphia: Wolters Kluwer; 2021.
43. Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H, et al. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol. 1994;24(6):1529–35.
44. Fleg JL, O’Connor FC. Exercise testing: clinical principles and applications. Cardiol Clin. 1993;11(2):199–214.
45. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Circulation. 2003;107(1):139–46.
46. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med. 2019;381(20):1909–17.
47. Dempsey JA, Smith CA. Pathophysiology of human ventilatory control. Eur Respir J. 2014;44(2):495–512.
48. Johnson BD, Saupe KW, Dempsey JA. Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol. 1992;73(3):874–86.
49. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. 6th ed. Philadelphia: Wolters Kluwer; 2021.
50. O’Donnell DE, Webb KA. Ventilatory limitations during exercise in chronic obstructive pulmonary disease. J Appl Physiol. 2008;105(2):782–90.
51. Hagberg JM, Coyle EF. Physiological determinants of endurance performance in racewalkers. Med Sci Sports Exerc. 1984;16(3):272–8.
52. Hopkins SR, McKenzie DC, Schoene RB, et al. Pulmonary gas exchange during exercise in athletes. Respir Physiol Neurobiol. 2011;179(2-3):306–17.
53. Powers SK, Dodd S, Lawler J, et al. Incidence of exercise-induced hypoxemia in elite endurance athletes. Med Sci Sports Exerc. 1993;25(2):139–44.
54. Romer LM, Polkey MI. Exercise-induced respiratory muscle fatigue: implications for performance. J Appl Physiol. 2008;104(3):879–88.
55. Sheel AW. Respiratory-muscle training in healthy individuals: physiological rationale and implications. Sports Med. 2002;32(9):567–81.
56. Choi Y, Kang S, Lim J, Kim H, Park J, Kim S. Validation of a wearable respiratory monitoring system during field exercise. Sensors (Basel). 2023;23(4):1872.
57. Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):2228–2238.
58. Sahlin K. Metabolic factors in fatigue. Sports Med. 1992;13(2):99–107.
59. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265(3 Pt 1):E380–91.
60. Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, signs, adaptation. J Physiol. 2001;537(Pt 2):333–345.
61. Hody S, Rogister B, Leprince P, Wang F, Croisier JL. Eccentric muscle contractions: risks and benefits. Front Physiol. 2019;10:536.
62. Narici MV, Maganaris CN. Plasticity of muscle architecture in response to resistance exercise. J Muscle Res Cell Motil. 2006;27(6):333–342.
63. Krustrup P, Mohr M, Amstrup T, Rysgaard T, Johansen J, Steensberg A, et al. The Yo-Yo intermittent recovery test: physiological response, reliability, and validity. Med Sci Sports Exerc. 2003;35(4):697–705.
64. Martínez-Valdés E, Farina D, Negro F, Falla D. Motor unit synchronization changes across contraction intensities of the human trapezius muscle. J Appl Physiol. 2018;125(6):1769–1780.
65. Baroni BM, Geremia JM, Rodrigues R, De Azevedo Franke R, Karamanidis K, Vaz MA. Time course of neuromuscular adaptations to eccentric training. Eur J Appl Physiol. 2013;113(6):1657–1668.
66. Lacour JR, Bourdin M, Messonnier L, Préfaut C. Effect of running velocity on hematocrit during exercise. Int J Sports Med. 1999;20(4):238–243.
67. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):35–44.
68. Sheel AW. Respiratory muscle training in healthy individuals: physiological rationale and implications for exercise performance. Sports Med. 2002;32(9):567–581.
69. Peebles AT, Ebrahimi A, Thies SB, Jones RK, Bissett PG. Wearable in-shoe sensors for gait and running analysis: a systematic review. Sensors (Basel). 2022;22(6):2125.
70. Balsom PD, Ekblom B, Sjödin B. Creatine supplementation and dynamic high-intensity intermittent exercise. Scand J Med Sci Sports. 1994;4(2):65–77.
71. Brooks GA, Gladden LB. The metabolic consequences of exercise: a brief review. Med Sci Sports Exerc. 2003;35(5):796–801.
72. Sahlin K. Metabolic factors in fatigue. Sports Med. 1992;13(2):99–107.
73. Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265(3 Pt 1):E380–E391.
74. Hawley JA, Leckey JJ. Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med. 2015;45(Suppl 1):S5–S12.
75. Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(Suppl 1):S28–S37.
76. Hargreaves M, Spriet LL. Exercise metabolism: fuels for the fire. Cold Spring Harb Perspect Med. 2018;8(8):a029744.
77. Gollnick PD, Piehl K, Åstrand PO. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241(1):45–57.
78. Bergström J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature. 1966;210(5033):309–310.
79. Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757–785.
80. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–361. https://doi.org/10.2165/00007256-200535040-00004
81. Ivy JL. Regulation of muscle glycogen repletion, muscle protein synthesis and repair following exercise. J Sports Sci Med. 2004;3(3):131–138. PMID: 24482516
82. Tschakert G, Hofmann P. High-intensity intermittent exercise: methodological and physiological aspects. Int J Sports Physiol Perform. 2013;8(6):600–610.
83. Ferrari M, Muthalib M, Quaresima V. The use of near-infrared spectroscopy in understanding skeletal-muscle physiology: recent developments. Philos Trans A Math Phys Eng Sci. 2011;369(1955):4577–4590.
84. Charlot K, Cornolo J, Vercruyssen F, et al. Comparison between heart rate and heart-rate variability methods for estimating oxygen consumption during dynamic exercise. Eur J Appl Physiol. 2016;116(11–12):2157–2165.
85. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):831–838.
86. Perrey S, Ferrari M. Muscle oximetry in sports science: a systematic review. Sports Med. 2018;48(3):597–616. https://doi.org/10.1007/s40279-017-0818-0
87. Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they? Sports Med. 2009;39(6):469–490.
88. Joyner MJ, Coyle EF. Endurance-exercise performance: the physiology of champions. J Physiol. 2008;586(1):35–44.
89. Sheel AW. Respiratory-muscle training in healthy individuals: physiological rationale and implications. Sports Med. 2002;32(9):567–81.
90. Romer LM, Polkey MI. Exercise-induced respiratory muscle fatigue: implications for performance. J Appl Physiol. 2008;104(3):879–88.
91. Peebles AT, Ebrahimi A, Thies SB, Banger MS, Nightingale EJ, Rowe PJ. Wearable in-shoe sensors for analysis of gait and running: a systematic review. Sensors (Basel). 2022;22(6):2125.
92. Balsom PD, Ekblom B, Sjödin B. Creatine supplementation and dynamic high-intensity intermittent exercise. Scand J Med Sci Sports. 1994;4(2):65–9.
93. Brooks GA, Gladden LB. The metabolic consequences of exercise: a brief review. Med Sci Sports Exerc. 2003;35(5):796–801.
94. Sahlin K. Metabolic factors in fatigue. Sports Med. 1992;13(2):99–107.
95. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265(3 Pt 1):E380–91.
96. Hawley JA, Leckey JJ. Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med. 2015;45(Suppl 1):S5–12.
97. Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(Suppl 1):S28–37.
98. Hargreaves M, Spriet LL. Exercise metabolism: fuels for the fire. Cold Spring Harb Perspect Med. 2018;8(8):a029744.
99. Gollnick PD, Piehl K, Åstrand PO. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241(1):45–57.
100. Bergström J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature. 1966;210(5033):309–10.
101. Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757–85.
102. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.
103. Ivy JL. Regulation of muscle glycogen repletion, muscle protein synthesis and repair following exercise. J Sports Sci Med. 2004;3(3):131–8.
104. Tschakert G, Hofmann P. High-intensity intermittent exercise: methodological and physiological aspects. Int J Sports Physiol Perform. 2013;8(6):600–10.
105. Rowell LB. Human Cardiovascular Control. New York: Oxford University Press; 1993.
106. Kenney WL, Craighead DH, Alexander LM. Heat waves, aging, and human cardiovascular health. Med Sci Sports Exerc. 2014;46(10):1891–9.
107. Sawka MN, Burke LM, Eichner ER, et al. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.
108. González-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol. 2008;586(1):45–53.
109. Hew-Butler T, Ayus JC, Kipps C, et al. Statement of the Third International Exercise-Associated Hyponatremia Consensus Development Conference. Clin J Sport Med. 2015;25(4):303–20.
110. Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–28.
111. Convertino VA, Armstrong LE, Coyle EF, et al. American College of Sports Medicine position stand: heat and cold illnesses during distance running. Med Sci Sports Exerc. 1996;28(12):i–x.
112. Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(Suppl 1):20–38.
113. Gagnon D, Kenny GP. Impaired thermoregulatory responses in older individuals during exercise in the heat. Nutrients. 2020;12(8):2289.
114. Tyler CJ, Sunderland C, Cheung SS. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis. Br J Sports Med. 2015;49(1):7–13.
115. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–1406.
116. Nosaka K, Newton MJ, Sacco P. Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scand J Med Sci Sports. 2002;12(6):337–346.
117. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle. J Physiol. 2010;588(6):1011–1022.
118. Barres R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–411.
119. Huang H, Xie S, Gu X, et al. Higher circulating miR-199a-5p indicates poor aerobic exercise capacity and associates with cardiovascular dysfunction during chronic exposure to high altitude. Front Physiol. 2021;12:587241.
120. Campbell JP, Turner JE. Debunking the myth of exercise-induced immune suppression: redefining the context to appreciate the complexity of a nuanced response. Exerc Immunol Rev. 2018;24:1–14.
121. Bigley AB, Rezvani K, Chew C, et al. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun. 2015;49:149–159.
122. Domaszk-Mrozek A, Strzelec K, Pokora I, et al. Eight-week step-aerobic training improves the immune profile in older women. Exp Gerontol. 2022;158:111650.
123. Powers SK, Radak Z, Ji LL. Exercise-induced oxidative stress: past, present and future. J Physiol. 2020;599(5):1449–1465.
124. Nieman DC, Williams AS, Shanely RA, et al. Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Physiol Rep. 2018;6(14):e13788.
125. Cole CR, Blackstone EH, Pashkow FJ, et al. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 1999;341(18):1351–1357.
126. Fox SM, Mathews DK. The Physiological Basis of Physical Education and Athletics. Philadelphia: Saunders College Publishing; 1981.
127. Grant S, Corbett K, Amjad AM, et al. A comparison of methods of predicting maximum oxygen uptake. Br J Sports Med. 1995;29(3):147–152.
128. Burnstein B, Steele R, Shrier I. Reliability of fitness tests using methods and time periods common in sport and occupational management. J Athl Train. 2011;46(5):505–513.
129. Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med. 2003;33(12):889–919.
130. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013;43(5):313–338.
131. Ferrari M, Muthalib M, Quaresima V. The use of near-infrared spectroscopy in understanding skeletal-muscle physiology: recent developments. Philos Trans A Math Phys Eng Sci. 2011;369(1955):4577–4590.
132. Vangrunderbeek H, Delheye P. Stepping from Belgium to the United States and back: the conceptualization and impact of the Harvard Step Test, 1942–2012. Research Quarterly for Exercise and Sport 2013;84(2):186-197.
133. Burnstein B, Steele R, Shrier I. Reliability of fitness tests using methods and time periods common in sport and occupational management. Journal of Athletic Training 2011;46(5):505-513.
134. Muchtar R. Pengaruh latihan Harvard step up terhadap perubahan volume oksigen maksimal pada pegawai kantor induk kantor kesehatan pelabuhan kelas I Batam tahun 2019. Ners Journal 2020;1(1).
135. Bayeh H, Paulinelli R, Soares L, Prates A, Morais P, Albuquerque I, et al. The cosmetic outcome of breast reconstruction: reproducibility of different methods assessed by different professionals. Mastology 2019;29(4):173-179.
136. Sari F, Devy S. Tabata workout dan peningkatan VO2max pada mahasiswi fakultas kedokteran universitas islam sumatera utara. JIK Jurnal Ilmu Kesehatan 2022;6(1):115.
137. Reedy J, Saiger G. Evaluation of the Harvard Step Test with respect to factors of height and weight. 1954.
138. Kim D, Cho Y, Seo T. Correlation between physical efficiency index using Harvard Step Test and heart rate variation in college students. J Exerc Rehabil. 2022;18(6):389–394.
139. Thukral H, Chatterjee T, Bhattacharyya D, Chatterjee S, Suranjana S, Pal M. Evaluation and assessment of leg muscle activity and fatigue across two popular step test exercises. J Biol Exerc. 2017;13(1):77–89.
140. White K, Lu J, Ibrahim Z, Furth P. Modified Harvard Step Testing within a clinic setting enables exercise prescription for cancer survivors. medRxiv. 2020.
141. Burnstein BD, Steele RJ, Shrier I. Reliability of fitness tests using methods and time periods common in sport and occupational management. J Athl Train. 2011;46(5):505–513. doi:10.4085/1062-6050-46.5.505
142. Physiopedia. Harvard Step Test. [Internet]. 2023 [cited 2024 Dec 1].
143. Sampaio S, Félix A, Gonçalves R, Oliveira T, Matos R, Ferreira JP. StepTest4all: validation of a three-minute step protocol and web calculator to predict maximal oxygen uptake in adults. J Funct Morphol Kinesiol. 2024;9(1):30.
144. Brouha L, Health CW, Graybiel A. Step test: simple method of measuring physical fitness for muscular work in young men. Rev Can Biol. 1943;2:86–91.
145. American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Philadelphia: Wolters Kluwer; 2018.
146. Murali S, Chew HS, Wong P, et al. Efficacy of remote step-test rehabilitation monitored by wearables: a randomized trial. Telemed J E-Health. 2023;29(11):1712–1720.
147. Sianipar IR, Goenarjo R, Sudarsono NC, et al. The Harvard Step Test Digital Device. Indonesian Patent EC00202210473; 2022.
148. Physiopedia Contributors. Harvard Step Test Instructions. Physiopedia Wiki. 2023. [Internet].
149. • Cooney JK, Moore JP, Ahmad YA, Jones JG, Lemmey AB, Casanova F, et al. A simple step test to estimate cardiorespiratory fitness in rheumatoid arthritis. Int J Rheumatol. 2013;2013:174541.
150. ACSM. Exercise Intensity Guidelines by VO2max and HRR. ACSM Position Statement; 2022. [Internet].
151. Bandyopadhyay A. Queen's college step test as an alternative of Harvard Step Test in young Indian women. Int J Sport Health Sci. 2008;6:15–20.
152. Patel H, Alkhawam H, Madanieh R, Shah N, Kosmas C, Vittorio TJ. Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J Cardiol. 2017;9(2):134–138.
153. Newham DJ, Mills KR, Quigley BM, Edwards RHT. Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci (Lond). 1983;64(1):55–62.
154. Krustrup P, Mohr M, Amstrup T, Rysgaard T, Johansen J, Steensberg A, et al. The Yo-Yo intermittent recovery test: physiological response, reliability, and validity. Med Sci Sports Exerc. 2003;35(4):697–705.
155. Katamanova E, Vasilieva L, Kuptsova N, Kodinets I, Kudaeva I, Sal’nikova G. Comprehensive assessment of the health and physical development in martial arts athletes. E3S Web Conf. 2020;210:17002.
156. Nuryadin A, Siswantoyo S. Development of Harvard Step Test AN-515 based on digital integrated technology. Medikora. 2021;20(1):10–22.
157. Brouha L. The step test: a simple method of measuring physical fitness for muscular work. Can Med Assoc J. 1943;49(2):93–95. PMCID: PMC1580867
158. Brouha L, Health CW. Harvard Step Test as a measure of physical fitness. J Assoc Phys Ment Rehabil. 1943;2:23–29.
159. Mujahid A, Ismail F, Ramli N, Shamsuddin A. A comparative study of heart rate recovery in male athletes using Harvard Step Test and Queen’s College Step Test. J Phys Educ Sport. 2023;23(3):542–547.
160. Shamsi H, Khan A, Kumar R, Rehman AU, Khan S. Analysis of recovery heart rate and physical efficiency index among active and sedentary students. Int J Sports Sci Phys Educ. 2022;7(1):1–5.
161. Riebe D, Ehrman JK, Liguori G, Magal M. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Philadelphia: Wolters Kluwer; 2018.
162. Domaradzki J, Cichy I, Rokita A, Popowczak M. Effects of Tabata training during physical education classes on body composition, aerobic capacity, and anaerobic performance of under-, normal- and overweight adolescents. International Journal of Environmental Research and Public Health 2020;17(3):876.
163. Hanifah R, Mohamed M, Jaafar Z, Mohsein N, Jalaludin M, Majid H, et al. The correlates of body composition with heart rate recovery after step test: an exploratory study of Malaysian adolescents. Plos One 2013;8(12).
164. Tee J, Gan W, Tan K, Chin Y. Obesity and unhealthy lifestyle associated with poor executive function among Malaysian adolescents. Plos One 2018;13(4).
165. Hanifah R, Majid H, Jalaludin M, Al-Sadat N, Murray L, Cantwell M, et al. Fitness level and body composition indices: cross-sectional study among Malaysian adolescent. BMC Public Health 2014;14(S3).
166. Vangrunderbeek H, Delheye P. Stepping from Belgium to the United States and back: the conceptualization and impact of the Harvard Step Test, 1942–2012. Research Quarterly for Exercise and Sport 2013;84(2):186-197.
167. Domaradzki J, Koźlenia D, Popowczak M. Sex moderated mediation of the musculoskeletal fitness in relationship between high-intensive interval training performing during physical education classes and cardiorespiratory fitness in healthy boys and girls. Biomed Research International 2022;2022:1-9.
168. Hanifah R, Mohamed M, Jaafar Z, Mohsein N, Jalaludin M, Majid H, et al. The correlates of body composition with heart rate recovery after step test: an exploratory study of Malaysian adolescents. Plos One 2013;8(12).
169. Hong S, Yang H, Kim D, Gonzales T, Brage S, Jeon J. Validation of submaximal step tests and the 6-min walk test for predicting maximal oxygen consumption in young and healthy participants. International Journal of Environmental Research and Public Health 2019;16(23):4858.
170. Kim S, Kim J, Lee D, Lee H, Lee J, Jeon J. Combined impact of cardiorespiratory fitness and visceral adiposity on metabolic syndrome in overweight and obese adults in Korea. Plos One 2014;9(1).
171. Lee M, Kim N, Jeon J. Effect of the 6-week home-based exercise program on physical activity level and physical fitness in colorectal cancer survivors: a randomized controlled pilot study. Plos One 2018;13(4).
172. Vangrunderbeek H, Delheye P. Stepping from Belgium to the United States and back: the conceptualization and impact of the Harvard Step Test, 1942–2012. Research Quarterly for Exercise and Sport 2013;84(2):186-197.
173. Lee K, Noh B, An K. Impact of synchronous online physical education classes using tabata training on adolescents during COVID-19: a randomized controlled study. International Journal of Environmental Research and Public Health 2021;18(19):10305.
174. Bandyopadhyay A. Validity of Cooper’s 12-minute run test for estimation of maximum oxygen uptake in male university students. Biology of Sport 2014;32(1):59-63.
175. Rachmawati E. Pengukuran kebugaran kardiorespirasi dengan step test: step test [Internet]. [cited 2024 Jun 4].
176. Pt S, Retharekar S, Kudalkar S. Comparison between incremental shuttle run test and Harvard’s step test on peak exercise performance in healthy males: a cross-sectional study. International Journal of Research in Medical Sciences 2019;7(8):3111.
177. J. C. No, “Development Of Harvard Step Test An-515 Based On Digital Integrated Technology,” 2021.
178. G. Santoso, “Kesanggupan Kinerja Menggunakan Harvard Step Test,” Wahana: Tridarma Perguruan Tinggi, vol. 72, no. 1, pp. 67–74, 2020.
179. Z. Zainuddin, S. Syahrinursaifi, M. Musran, and A. Zaki, “Evaluasi Kebugaran Jasmani Melalui Harvard Step Test Pada Mahasiswa Penjaskesrek Fkip Universitas Abulyatama,” Jurnal Dedikasi Pendidikan, vol. 8, no. 2, pp. 843–854, 2024.
180. M. Jankowski, A. Niedzielska, M. Brzezinski, and J. Drabik, “Cardiorespiratory fitness in children: a simple screening test for population studies,” Pediatr Cardiol, vol. 36, pp. 27–32, 2015.
181. A. D FAIGENBAUM et al., “Effects of Different Warm-up Protocols on the Cardiopulmonary Responses to Exercise Testing in Youth,” Int J Exerc Sci, vol. 17, no. 4, p. 1530, 2024.
182. J. A. Bragada, R. F. Bartolomeu, P. M. Rodrigues, P. M. Magalhães, J. P. Bragada, and J. E. Morais, “Validation of StepTest4all for assessing cardiovascular capacity in young adults,” Int J Environ Res Public Health, vol. 19, no. 18, p. 11274, 2022.
183. E. A. Septiasari and S. Sumaryanti, “Pengembangan tes kebugaran jasmani untuk anak tunanetra menggunakan modifikasi Harvard Step Test tingkat sekolah dasar,” Jurnal Pedagogi Olahraga Dan Kesehatan, vol. 3, no. 1, pp. 55–64, 2022.
184. R. S. Marinho et al., “Reliability and validity of six-minute step test in patients with heart failure,” Brazilian Journal of Medical and Biological Research, vol. 54, no. 10, p. e10514, 2021.
185. S. Pertiwi, I. Jus’at, and F. Ichsani, “Perbandingan Peningkatan Kebugaran Kardiorespirasi Antara Senam Poco-Poco Dan Senam Zumba Pada Wanita Usia 25-30 Tahun”.
186. P. A. Wulandari and S. Purnawati, “Perbandingan Daya Tahan Kardiorespirasi Mahasiswa Program Studi Pendidikan Dokter Fakultas Kedokteran Universitas Udayana Angkatan 2013 Dengan Mahasiswa D1 Bea Cukai Sekolah Tinggi Akutansi Negara Denpasar Angkatan 2013,” 2013.
187. H. Yusuf, “Evaluasi Kebugaran Jasmani Melalui Harvard Step Testpada Mahasiswapjkr Tahun2016/2017 IKIP Budi Utomo,” JP. JOK (Jurnal Pendidikan Jasmani, Olahraga dan Kesehatan), vol. 1, no. 2, pp. 1–13, 2018.
188. W. Nugraheni, S. Belvana, and B. Bachtiar, “Optimalisasi Tes Kebugaran Jasmani Indonesia Pada Siswa Sekolah Menengah Pertama,” Jurnal Olahraga Dan Kesehatan Indonesia (JOKI), vol. 4, no. 1, pp. 61–68, 2023.
189. S. H. Hong, H. I. Yang, D.-I. Kim, T. I. Gonzales, S. Brage, and J. Y. Jeon, “Validation of submaximal step tests and the 6-min walk test for predicting maximal oxygen consumption in young and healthy participants,” Int J Environ Res Public Health, vol. 16, no. 23, p. 4858, 2019.
190. S. Saputra, “Studi Kebugaran Jasmani Menggunakan Metode Harvard Step Tes Pada Mahasiswa Penjas Semester Vi Universitas Bengkulu Tahun Akademik 2018-2019,” Kinestetik: Jurnal Ilmiah Pendidikan Jasmani, vol. 3, no. 2, pp. 193–197, 2019.
191. W. Soliman Ismail, “Evaluating the validity and reliability of Harvard Step Test to predict VO2max in terms of the step height according to the knee joint angle,” Journal of Applied Sports Science, vol. 1, no. 2, pp. 126–132, 2011.
192. H. Bennett, G. Parfitt, K. Davison, and R. Eston, “Validity of submaximal step tests to estimate maximal oxygen uptake in healthy adults,” Sports Medicine, vol. 46, pp. 737–750, 2016.
193. A. Bandyopadhyay, “Validity of Cooper’s 12-minute run test for estimation of maximum oxygen uptake in male university students,” Biol Sport, vol. 32, no. 1, pp. 59–63, 2015.
194. A. Mänttäri et al., “Six‐minute walk test: a tool for predicting maximal aerobic power (VO 2 max) in healthy adults,” Clin Physiol Funct Imaging, vol. 38, no. 6, pp. 1038–1045, 2018.
195. M. Z. H. Hamdani et al., “Normative reference standard for CORE muscular endurance of adolescent 12-16 years from South Punjab Pakistan: a cross-sectional study,” Pakistan Journal of Physiology, vol. 18, no. 1, pp. 3–8, 2022.
196. Y. Rao et al., “Factors associated with physical fitness and disparities in population segments among older adults: A cross-sectional study,” J Exerc Sci Fit, vol. 23, no. 1, pp. 69–76, 2025.
197. S. T. Rizandi, R. Hadinata, and A. J. Putra, “Tinjauan Kebugaran Jasmani Siswa Dengan Menggunakan Tes Kebugaran Pelajar Nusantara (TKPN) Pada Siswa Laki-Laki SMA Negeri 6 Kota Jambi,” Jurnal Olahraga Indragiri, vol. 9, no. 1, pp. 46–54, 2025.
198. R. Yunitasari and Y. W. Putra, “Tingkat kebugaran vo2 max di masa pandemi covid-19 pada barista kopi di kota klaten,” PREPOTIF: Jurnal Kesehatan Masyarakat, vol. 6, no. 2, pp. 1508–1514, 2022.
199. D. J. Harriss and G. Atkinson, “Update–ethical standards in sport and exercise science research,” Int J Sports Med, vol. 32, no. 11, pp. 819–821, 2011.
200. P. Riyanto, Y. C. Koten, and J. Lahinda, “Senam lansia dalam upaya meningkatkan kebugaran jasmani lansia,” Jurnal Pendidikan Dan Kebudayaan (JURDIKBUD), vol. 2, no. 3, pp. 314–319, 2022.
201. Tewari, R. et al. (2023). Heart rate recovery and step test indices as predictors of metabolic syndrome in middle-aged adults. Metabolic Syndrome and Related Disorders, 21(5), 231–238. https://doi.org/10.1089/met.2023.0017
202. Santos, F.A. et al. (2022). Physical fitness, step test performance, and executive function in university students. Frontiers in Human Neuroscience, 16, 899524. https://doi.org/10.3389/fnhum.2022.899524
203. Chen, L.C. et al. (2023). Feasibility and reliability of modified step test in elderly with mild physical impairment. Journal of Geriatric Physical Therapy, 46(2), 84–91. https://doi.org/10.1519/JPT.0000000000000312
204. León, J.C. et al. (2024). Machine learning estimation of aerobic capacity using heart rate and step test data. Computer Methods in Biomechanics and Biomedical Engineering, 27(2), 153–160. https://doi.org/10.1080/10255842.2023.2283773
205. Morimoto, H. et al. (2022). Step test indices reflect chronic fatigue and stress markers in healthcare workers. Journal of Occupational Health, 64(3), e12376. https://doi.org/10.1002/1348-9585.12376
206. Zhao, Y. et al. (2021). Remote assessment of aerobic fitness using step test and smartphone sensors. JMIR mHealth and uHealth, 9(11), e28861. https://doi.org/10.2196/28861
207. Sarfraz, A. et al. (2023). Step test as a submaximal tool for functional assessment post-COVID-19 infection. Pulmonary Rehabilitation Journal, 14(1), 44–50. https://doi.org/10.1007/s12012-023-09764-1
208. Nagata, R. et al. (2022). Genetic variations modulate response to aerobic training in step tests. Journal of Applied Physiology Genetics, 128(4), 902–910. https://doi.org/10.1152/japplgen.2022.00873
209. Moya-Ramón M. et al. (2023). Heart rate recovery as a psychological stress marker in athletes. International Journal of Environmental Research and Public Health, 20(3), 1260. https://doi.org/10.3390/ijerph20031260
210. Kim, H. Y. et al. (2022). Feasibility of community cardiovascular fitness testing using step tests in rural settings. BMC Public Health, 22, 414. https://doi.org/10.1186/s12889-022-12840-w
211. Warburton, D.E.R. et al. (2021). The updated Physical Activity Readiness Questionnaire (PAR-Q+) and electronic preparticipation screening system. Clinical Journal of Sport Medicine, 31(3), 259–267. https://doi.org/10.1097/JSM.0000000000000849
212. Ahmed, H. et al. (2023). Step tests in cardiac rehabilitation: a valid alternative to treadmill-based protocols? European Journal of Preventive Cardiology, 30(1), 74–81. https://doi.org/10.1093/eurjpc/zwac084
213. Patel, N. et al. (2021). Effects of interval training on Harvard Step Test performance in adolescents. Journal of Pediatric Exercise Science, 33(1), 44–51. https://doi.org/10.1123/pes.2021-0032
214. Hassan, A.A. et al. (2023). Sleep quality influences heart-rate recovery after submaximal exertion. Journal of Clinical Sleep Medicine, 19(2), 285–291. https://doi.org/10.5664/jcsm.10314
215. Chen, S. et al. (2020). Step testing as a cardiovascular screening tool in school settings. Preventive Medicine Reports, 19, 101148. https://doi.org/10.1016/j.pmedr.2020.101148
216. Zhang, J. et al. (2020). Cardiovascular responses to step testing at high altitude. High Altitude Medicine & Biology, 21(2), 140–147. https://doi.org/10.1089/ham.2020.0032
217. Liang, F. et al. (2021). Delayed BP recovery after submaximal testing as a marker of masked hypertension. Journal of Human Hypertension, 35(6), 528–535. https://doi.org/10.1038/s41371-021-00520-2
218. Farooqi, M. et al. (2022). AI-enhanced risk prediction from step test performance data. BMC Cardiovascular Disorders, 22(1), 493. https://doi.org/10.1186/s12872-022-02813-y
219. Ramos, F.T. et al. (2020). Validation of Harvard Step Test for oncology rehabilitation in gynecological cancers. Supportive Care in Cancer, 28(10), 4791–4799. https://doi.org/10.1007/s00520-020-05429-2
220. Dhanani, R. et al. (2020). Effects of rhythmic auditory cues on performance in the Harvard Step Test. International Journal of Exercise Psychology, 12(2), 88–95.
221. De Luca, G. et al. (2022). Harvard Step Test in neurological rehabilitation: evidence from stroke survivors. NeuroRehabilitation, 51(3), 353–360. https://doi.org/10.3233/NRE-220086
222. Park, J.H. et al. (2021). Environmental temperature and heart rate responses during step-based testing. Environmental Physiology, 8(1), 22–29.
223. Nguyen, D. et al. (2021). Field substitution of Harvard Step Test in military physical readiness programs. Military Medicine, 186(5), e583–e589. https://doi.org/10.1093/milmed/usab001
224. Siregar, A.D. et al. (2021). Harvard Step Test as a fitness outcome in pediatric obesity interventions. BMC Pediatrics, 21(1), 391. https://doi.org/10.1186/s12887-021-02917-z
225. Silva, D. et al. (2021). Acute mood changes after submaximal exertion in individuals with depressive symptoms. Journal of Affective Disorders, 295, 385–391. https://doi.org/10.1016/j.jad.2021.08.002
226. Gupta, A. & Lim, K. (2020). Biomechanical asymmetries during step testing in youth athletes. Journal of Applied Biomechanics, 36(4), 230–237. https://doi.org/10.1123/jab.2019-0184
227. Khan, M. et al. (2022). Predictive modeling of Physical Efficiency Index in healthy adults. Journal of Exercise Science & Fitness, 20(3), 211–217. https://doi.org/10.1016/j.jesf.2022.04.005
228. Molina, J. et al. (2023). Physical Fitness and Mental Health in University Students: Role of Step Testing. BMC Psychology, 11(98). https://doi.org/10.1186/s40359-023-01079-z
229. Al-Mutairi, M. & Prakash, P. (2022). Comparison of Harvard Step Test and Laboratory VO2max Testing in Trained Athletes. International Journal of Sports Physiology and Performance, 17(8), 1134–1142. https://doi.org/10.1123/ijspp.2022-0165
230. Choudhary, P. et al. (2023). Which Field Test is Best? Harvard Step Test vs. Beep Test in Amateur Fitness. Journal of Strength and Conditioning Research, 37(5), 812–820. https://doi.org/10.1519/JSC.0000000000004270
231. Ramírez, A. et al. (2024). Psychosocial Variables and Their Influence in Fitness Step Tests. Frontiers in Sports and Active Living, 6(101), 1–9. https://doi.org/10.3389/fsals.2024.1011325
232. Tran, D. et al. (2022). Combining Harvard Step Test and Bioimpedance for Cardiometabolic Risk Prediction. Asia Pacific Journal of Clinical Nutrition, 31(4), 489–497. https://doi.org/10.6133/apjcn.202212_31(4).0001
233. Lin, Q. et al. (2023). Step-Based Fitness Assessment in Occupational Health Settings: A Cross-sectional Study. Occupational Medicine Journal, 73(6), 345–353. https://doi.org/10.1093/occmed/kqad032
234. Holten MK, Zacho M, Gaster M, et al. (2004). Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes, 53(2), 294–305.
235. Carter JB, Banister EW, Blaber AP. (2003). Effect of endurance exercise on autonomic control of heart rate. Sports Medicine, 33(1), 33–46.
236. Navarro M, et al. (2022). Cardiopulmonary Adaptations to Step-Based Training in Adolescent Athletes. Pediatr Exerc Sci, 34(1), 15–23.
237. Chen L, et al. (2022). Sleep Deprivation and Inflammatory-Hormonal Response to Submaximal Step Exercise. Psychoneuroendocrinology, 135:105603.
238. Kim JS, Oh JS, Kim SG. (2023). Correlation Analysis Between the Estimation of VO2max Using Harvard Step Test and CPX. J. ReAttach Therapy & Dev. Divers., 6(10):1617–1621.
239. [Penulis Tak Diketahui]. (2024). Assessing VO2max Influence of Leg Length in Harvard Step Test. Res. Gate.
240. Mestry S, Nagarwala RM, Dabadghav R. (2023). Cardiovascular Fitness Using Individualized Adjustable Step Test. Indian J. Respir. Care, 12(2):131–134.
241. [Penulis Tak Diketahui]. (2022). Establish VO2max Prediction Models Based on Exercise HR Recovery and Body Composition. MedSci, 22:2676.
242. Putri M, et al. (2021). Step Height Adjustment and VO2max Estimation Accuracy in Southeast Asian Young Adults. J. Sport Health Sci, 10(4), 487–493.
243. Singh R, et al. (2022). Comparing Predicted Aerobic Capacity with Daily Physical Activity in Factory Workers. J Occup Health, 64(1), e12345.
244. Tan Z, et al. (2023). Validation of Wearable Technology Estimating VO2max via Step Tests and HRV. Sensors, 23(4), 1580.
245. Miller T, et al. (2020). Comparing 3-min vs. 5-min Step Test Protocols for Cardiovascular Fitness Assessment. J Strength Cond Res, 34(10), 2891–2897.
246. Silva MA, et al. (2024). Validity of Step Test for Cardiorespiratory Assessment in Obese Children. J Pediatr (Rio J), 100(2), 172–178.
247. Clavario P, De Marzo V, Lotti R, et al. (2021). Assessment of functional capacity with a 1-minute sit-to-stand test in patients recovering from COVID-19. European Journal of Physical and Rehabilitation Medicine, 57(4), 659–666.
248. Lavinen Kumar Sugumar et al., (2024). Pilot Study – Estimated VO2max via Modified Harvard Step Test in ACL-Injury Patients. Sports Med. Unit, Hospital Tuanku Ja’afar.
249. Torres-Perez E, et al. (2023). Feasibility of Step Tests for Cardiac Rehabilitation: A Pilot Study. Cardiol Res Pract, 2023:456212.
250. Lee HJ, et al. (2020). Heart Rate Recovery after Submaximal Step Exercise as a Marker of Autonomic Function in Elderly Adults. Geriatr Gerontol Int, 20(9), 827–834.
251. Park SJ, et al. (2021). Use of Step Tests and Pulse Oximetry in Functional Assessment of COPD Patients. Respir Med, 182:106426.
252. Rahman R, et al. (2022). Autonomic Stress Indicators among Health Workers via HRV after Step Test. BMC Public Health, 22(1), 723.
253. Wang J, et al. (2022). Association of BMI and Cardiorespiratory Fitness Using Step Test in Chinese Adolescents. J Adolesc Health, 70(6), 932–938.
254. Sawka MN, Young AJ, Cadarette BS, et al. (1985). Influence of heat stress and acclimation on maximal aerobic power. European Journal of Applied Physiology, 53(4), 294–298.
255. Karageorghis CI, Jones L, Low DC. (2006). Relationship between exercise heart rate and music tempo preference. Research Quarterly for Exercise and Sport, 77(2), 240–250.
256. Zhou Y, et al. (2021). Evaluating Workload Tolerance in Hot Environments Using Modified Step Tests. Int Arch Occup Environ Health, 94(7), 1473–1480.
257. Lopez C, et al. (2021). The Effect of Fast-Tempo Music on Step Test Performance and Perceived Exertion. Int J Sports Med, 42(3), 245–250.
258. Ramirez M, et al. (2023). The Utility of Harvard Step Test in Military Cadet Fitness Assessment. Mil Med, 188(5), e923–e930.
