DATA MINING: Teori dan Praktik
Kata Kunci:
data miningSinopsis
Dalam era digital saat ini, data menjadi aset penting bagi organisasi. Meningkatnya volume dan kompleksitas data menuntut metode yang canggih untuk mengolah dan menganalisisnya. Data mining muncul sebagai solusi yang mampu mengubah data mentah menjadi informasi berharga yang mendukung pengambilan keputusan. Teknologi ini tidak hanya bermanfaat di bidang bisnis, tetapi juga dalam penelitian, kesehatan, pendidikan, dan sektor keuangan.
Bab
-
KATA PENGANTAR
-
DAFTAR ISI
-
BAB 1 PENGENALAN DATA MINING
-
BAB 2 JENIS-JENIS DATA MINING
-
BAB 3 PROSES DATA MINING
-
BAB 4 EXPLORASI DATA (DATA EXPLORATION AND VISUALIZATION)
-
BAB 5 TEKNIK PRA-PEMROSESAN DATA
-
BAB 6 ALGORITMA KLASIFIKASI (BAGIAN 1)
-
BAB 7 ALGORITMA KLASIFIKASI (BAGIAN 2)
-
BAB 8 ALGORITMA KLASTERISASI (BAGIAN 1)
-
BAB 9 ALGORITMA KLASTERISASI (BAGIAN 2)
-
BAB 10 ALGORITMA ASOSIASI
-
BAB 11 REGRESI DAN PREDIKSI
-
BAB 12 MODEL EVALUASI DAN PEMILIHAN MODEL
-
BAB 13 TEKNIK DIMENSIONALITY REDUCTION 137
-
BAB 14 PROYEK DATA MINING DAN IMPLEMENTASI
-
REFERENSI
-
BIODATA PENULIS
Downloads
Referensi
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95.
Waskom, M. (2021). Seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021.
McKinney, W. (2010). Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference, 445, 51–56.
van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA: CreateSpace.
Tan, P. N., Steinbach, M., & Kumar, V. (2018). Introduction to Data Mining (2nd ed.). Pearson.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R. Springer.
Liu, B. (2007). Web data mining: Exploring hyperlinks, contents, and usage data. Springer.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.
Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.). Wiley.
Vapnik, V. N. (1995). The nature of statistical learning theory. Springer.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54.
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), 487–499.
Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, 12(3), 372–390.
Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann.
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, 14(2), 1137–1145.
Thomas, M., & Freund, Y. (1999). Boosting: Foundations and algorithms. MIT Press.
Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.
Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31(3), 249–268.
Berrar, D. (2018). Cross-validation. In Encyclopedia of Bioinformatics and Computational Biology (pp. 542–545). Elsevier.
Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.
Mitchell, T. M. (1997). Machine learning. McGraw-Hill.
Provost, F., & Fawcett, T. (2013). Data science for business. O’Reilly Media.
Biecek, P., & Burzykowski, T. (2021). Explanatory model analysis. Chapman and Hall/CRC.
Aggarwal, C. C. (2015). Data mining: The textbook. Springer.
Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370–418.
Zhang, H. (2004). The optimality of naive Bayes. AA, 1(2), 3.
Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: A guide for data scientists. O’Reilly Media.
Alpaydin, E. (2020). Introduction to machine learning (4th ed.). MIT Press.
Larson, R., & Farber, B. (2015). Elementary statistics: Picturing the world (6th ed.). Pearson.
NIST/SEMATECH. (2013). e-Handbook of Statistical Methods. National Institute of Standards and Technology.
Kelleher, J. D., Mac Carthy, M., & Korvir, B. (2015). Fundamentals of machine learning for predictive data analytics: Algorithms, worked examples, and case studies. MIT Press.
IBM. (2020). SPSS Statistics Documentation. Retrieved from https://www.ibm.com/docs/en/spss-statistics
Kaggle Inc. (2023). Kaggle Datasets. Retrieved from https://www.kaggle.com/datasets
UC Irvine Machine Learning Repository. (2023). Retrieved from https://archive.ics.uci.edu/ml/index.php
Chollet, F. (2018). Deep learning with Python. Manning Publications.
Rouse, M. (2021). Data preprocessing. TechTarget. Retrieved from https://www.techtarget.com
Microsoft. (2023). Azure Machine Learning Documentation. Retrieved from https://docs.microsoft.com/en-us/azure/machine-learning/
IBM Cloud Education. (2022). What is data mining? Retrieved from https://www.ibm.com/cloud/learn/data-mining
DataRobot. (2021). What is data mining? Retrieved from https://www.datarobot.com/wiki/data-mining/
Tableau. (2022). Data visualization overview. Retrieved from https://www.tableau.com/learn/articles/data-visualization
Oracle. (2023). Introduction to data mining. Retrieved from https://docs.oracle.com
SAS Institute. (2022). SAS Visual Data Mining and Machine Learning. Retrieved from https://www.sas.com
