DATA MINING: Teori dan Praktik

Penulis

Ifani Hariyanti S.T., M.M.
Universitas Adhirajasa Reswara Sanjaya
Sari Susanti, S.Kom., M.Kom.,
Universitas Adhirajasa Reswara Sanjaya
Agung Rachmat Raharja, S.T., M.M., M.Kom.,
Universitas Adhirajasa Reswara Sanjaya

Kata Kunci:

data mining

Sinopsis

Dalam era digital saat ini, data menjadi aset penting bagi organisasi. Meningkatnya volume dan kompleksitas data menuntut metode yang canggih untuk mengolah dan menganalisisnya. Data mining muncul sebagai solusi yang mampu mengubah data mentah menjadi informasi berharga yang mendukung pengambilan keputusan. Teknologi ini tidak hanya bermanfaat di bidang bisnis, tetapi juga dalam penelitian, kesehatan, pendidikan, dan sektor keuangan.

Bab

  • KATA PENGANTAR
  • DAFTAR ISI
  • BAB 1 PENGENALAN DATA MINING
  • BAB 2 JENIS-JENIS DATA MINING
  • BAB 3 PROSES DATA MINING
  • BAB 4 EXPLORASI DATA (DATA EXPLORATION AND VISUALIZATION)
  • BAB 5 TEKNIK PRA-PEMROSESAN DATA
  • BAB 6 ALGORITMA KLASIFIKASI (BAGIAN 1)
  • BAB 7 ALGORITMA KLASIFIKASI (BAGIAN 2)
  • BAB 8 ALGORITMA KLASTERISASI (BAGIAN 1)
  • BAB 9 ALGORITMA KLASTERISASI (BAGIAN 2)
  • BAB 10 ALGORITMA ASOSIASI
  • BAB 11 REGRESI DAN PREDIKSI
  • BAB 12 MODEL EVALUASI DAN PEMILIHAN MODEL
  • BAB 13 TEKNIK DIMENSIONALITY REDUCTION 137
  • BAB 14 PROYEK DATA MINING DAN IMPLEMENTASI
  • REFERENSI
  • BIODATA PENULIS

Downloads

Download data is not yet available.

Biografi Penulis

Ifani Hariyanti S.T., M.M., Universitas Adhirajasa Reswara Sanjaya

Ifani Hariyanti S.T., M.M., lahir di Bandung pada 18 November 1987. Sejak 2020, saya menikmati peran sebagai pengajar di ARS University, dan juga membantu mengelola keuangan universitas. Saya senang dengan hal baru dan senang berpetualang, memungkinkan saya untuk terus tumbuh dalam pekerjaan dan hobi saya.

Sari Susanti, S.Kom., M.Kom., , Universitas Adhirajasa Reswara Sanjaya

Sari Susanti, S.Kom., M.Kom., lahir di Bandung 23 Maret 1995. Merupakan seorang Dosen tetap dan Peneliti di Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Adhirajasa Reswara Sanjaya atau yang lebih dikenal (ARS University). Beliau aktif melakukan penelitian dengan kajian di bidang data mining, analisis dan perancangan sistem informasi. Selain itu beberapa kali pernah mendapatkan hibah penelitian yang didanai oleh Kemdikbudristek atau yang sekarang dikenal dengan Kemdiktisaintek.

Agung Rachmat Raharja, S.T., M.M., M.Kom.,, Universitas Adhirajasa Reswara Sanjaya

Agung Rachmat Raharja, S.T., M.M., M.Kom., Lahir di Bandung 23 April 1987. Menempuh pendidikan SDN 1 Sejahtera II, SMP 32 Bandung, SMA PGRI, setelah lulus S1 melanjutkan S2 Magister Manajemen di ARS University dan menempuh pendidikan S2 Magister Komputer di Universitas Langlang Buana. Aktif dalam mengajar dan sekarang menjadi dosen di Universitas Swasta di Bandung

Referensi

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95.

Waskom, M. (2021). Seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021.

McKinney, W. (2010). Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference, 445, 51–56.

van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA: CreateSpace.

Tan, P. N., Steinbach, M., & Kumar, V. (2018). Introduction to Data Mining (2nd ed.). Pearson.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R. Springer.

Liu, B. (2007). Web data mining: Exploring hyperlinks, contents, and usage data. Springer.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.). Wiley.

Vapnik, V. N. (1995). The nature of statistical learning theory. Springer.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), 487–499.

Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, 12(3), 372–390.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, 14(2), 1137–1145.

Thomas, M., & Freund, Y. (1999). Boosting: Foundations and algorithms. MIT Press.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.

Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31(3), 249–268.

Berrar, D. (2018). Cross-validation. In Encyclopedia of Bioinformatics and Computational Biology (pp. 542–545). Elsevier.

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.

Mitchell, T. M. (1997). Machine learning. McGraw-Hill.

Provost, F., & Fawcett, T. (2013). Data science for business. O’Reilly Media.

Biecek, P., & Burzykowski, T. (2021). Explanatory model analysis. Chapman and Hall/CRC.

Aggarwal, C. C. (2015). Data mining: The textbook. Springer.

Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370–418.

Zhang, H. (2004). The optimality of naive Bayes. AA, 1(2), 3.

Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: A guide for data scientists. O’Reilly Media.

Alpaydin, E. (2020). Introduction to machine learning (4th ed.). MIT Press.

Larson, R., & Farber, B. (2015). Elementary statistics: Picturing the world (6th ed.). Pearson.

NIST/SEMATECH. (2013). e-Handbook of Statistical Methods. National Institute of Standards and Technology.

Kelleher, J. D., Mac Carthy, M., & Korvir, B. (2015). Fundamentals of machine learning for predictive data analytics: Algorithms, worked examples, and case studies. MIT Press.

IBM. (2020). SPSS Statistics Documentation. Retrieved from https://www.ibm.com/docs/en/spss-statistics

Kaggle Inc. (2023). Kaggle Datasets. Retrieved from https://www.kaggle.com/datasets

UC Irvine Machine Learning Repository. (2023). Retrieved from https://archive.ics.uci.edu/ml/index.php

Chollet, F. (2018). Deep learning with Python. Manning Publications.

Rouse, M. (2021). Data preprocessing. TechTarget. Retrieved from https://www.techtarget.com

Microsoft. (2023). Azure Machine Learning Documentation. Retrieved from https://docs.microsoft.com/en-us/azure/machine-learning/

IBM Cloud Education. (2022). What is data mining? Retrieved from https://www.ibm.com/cloud/learn/data-mining

DataRobot. (2021). What is data mining? Retrieved from https://www.datarobot.com/wiki/data-mining/

Tableau. (2022). Data visualization overview. Retrieved from https://www.tableau.com/learn/articles/data-visualization

Oracle. (2023). Introduction to data mining. Retrieved from https://docs.oracle.com

SAS Institute. (2022). SAS Visual Data Mining and Machine Learning. Retrieved from https://www.sas.com

DATA MINING: Teori dan Praktik

Unduhan

Diterbitkan

14 Juli 2025

Detail monograf ini

ISBN-13 (15)

978-634-202-440-9

Dimensi Fisik