Dr. Eng. Ir. Irfan Mujahidin, S.T., M.T., M.Sc., IPP.

SIRKUUT

KOMPONEN PASIF

SIRKUITTelekomunikasi **Nirkabel**

Komponen Pasif

Dr. Eng, Ir. Irfan Mujahidin, S.T., M.T., M.Sc., IPP.

PENERBIT KBM INONESIA

PENERBIT KBM INDONESIA

Adalah penerbit dengan misi memudahkan proses penerbitan buku buku penulis di tanah air Indonesia. Serta menjadi media sharing proses penerbitan buku.

SIRKUIT TELEKOMUNIKASI NIRKABEL (KOMPONEN PASIF)

Copyright @2025 By Dr. Eng, Ir. Irfan Mujahidin, S.T., M.T., M.Sc., IPP. All right reserved

Penulis

Dr. Eng, Ir. Irfan Mujahidin, S.T., M.T., M.Sc., IPP.

Desain Sampul

Aswan Kreatif

Tata Letak

Sofita HM

Editor

Dr. Muhamad Husein Maruapey, Drs., M.Sc. Background isi buku di ambil dari <u>https://www.freepik.com/</u>

Official

Depok, Sleman-Jogjakarta (Kantor) Penerbit Karya Bakti Makmur (KBM) Indonesia Anggota IKAPI/No. IKAPI 279/JTI/2021 081357517526 (Tlpn/WA)

Website

<u>https://penerbitkbm.com</u>

www.penerbitbukumurah.com

Email

naskah@penerbitkbm.com

Distributor

https://penerbitkbm.com/toko-buku/

Youtube Penerbit KBM Sastrabook Instagram @penerbit.kbmindonesia @penerbitbukujogja

ISBN: 978-634-202-249-8

Cetakan ke-1, Maret 2025 15,5 x 23 cm, xvi + 142 halaman

lsi buku diluar tanggungjawab penerbit Hak cipta merek KBM Indonesia sudah terdaftar di DJKI-Kemenkumham dan isi buku dilindungi undang-undang.

> Dilarang keras menerjemahkan, memfotokopi, atau memperbanyak sebagian atau seluruh isi buku ini tanpa seizin penerbit karena beresiko sengketa hukum

Sanksi Pelanggaran Pasal 113 Undang-Undang No. 28 Tahun 2014 Tentang Hak Cipta

- Setiap Orang yang dengan tanpa hak melakukan pelanggaran hak ekonomi sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf i untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 1 (satu) tahun dan/atau pidana denda paling banyak Rp 100.000.000 (seratus juta rupiah).
- 2. Setiap Orang yang dengan tanpa hak dan/atau tanpa izin Pencipta atau pemegang Hak Cipta melakukan pelanggaran hak ekonomi Pencipta sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf c, huruf d, huruf f, dan/atau huruf h untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 3 (tiga) tahun dan/atau pidana denda paling banyak Rp 500.000.000,000 (lima ratus juta rupiah).
- 3. Setiap Orang yang dengan tanpa hak dan/atau tanpa izin Pencipta atau pemegang Hak Cipta melakukan pelanggaran hak ekonomi Pencipta sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf a, huruf b, huruf e, dan/atau huruf g untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 4 (empat) tahun dan/atau pidana denda paling banyak Rp 1.000.000,000 (satu miliar rupiah).
- 4. Setiap Orang yang memenuhi unsur sebagaimana dimaksud pada ayat (3) yang dilakukan dalam bentuk pembajakan, dipidana dengan pidana penjara paling lama 10 (sepuluh) tahun dan/atau pidana denda paling banyak Rp 4.000.000,000 (empat miliar rupiah).

KATA PENGANTAR

Puji syukur kami panjatkan kepada Tuhan Yang Maha Esa, karena atas rahmat-Nya, buku Sirkuit Komunikasi Nirkabel dapat terwujud dengan baik. Buku ini merupakan hasil karya dari Dr. Eng, Ir. Irfan Mujahidin, S.T., M.T., M.Sc., IPP, yang telah dengan tekun dan penuh dedikasi membahas berbagai konsep, teori, serta aplikasi dalam bidang komunikasi nirkabel, khususnya pada aspek sirkuit dan sistem yang mendasarinya.

Komunikasi nirkabel merupakan salah satu bidang yang berkembang sangat pesat dalam dekade terakhir, baik dalam skala teknologi maupun penggunaannya dalam kehidupan sehari-hari. Dengan kemajuan pesat pada teknologi komunikasi, pemahaman terhadap sirkuit yang mendukung sistem komunikasi nirkabel menjadi sangat penting, baik dari sisi akademis, riset, maupun aplikasi praktis di industri. Buku ini hadir sebagai kontribusi yang sangat relevan untuk memperkaya literatur tentang sirkuit komunikasi nirkabel dengan pendekatan yang komprehensif dan berbasis pada teori-teori dasar yang kuat serta penerapan yang mendalam.

Penulis buku ini, Dr. Eng, Ir. Irfan Mujahidin, S.T., M.T., M.Sc., IPP, dengan pengalaman dan keahliannya dalam bidang ini, berhasil menyajikan materi yang tidak hanya berbobot secara ilmiah tetapi juga mudah dipahami oleh para pembaca, baik itu mahasiswa, praktisi, maupun peneliti yang tertarik pada perkembangan teknologi komunikasi nirkabel. Setiap bab disusun dengan cermat, memberikan penjelasan yang mendalam namun tetap mempertahankan keterbacaan yang tinggi untuk memudahkan pemahaman para pembaca.

Buku ini diharapkan dapat memberikan sumbangan pemikiran dan pengetahuan yang bermanfaat bagi pengembangan ilmu pengetahuan dan teknologi di bidang komunikasi nirkabel. Semoga buku ini dapat menjadi referensi yang berharga dalam pengembangan riset serta sebagai acuan dalam praktik dunia industri yang semakin membutuhkan keahlian di bidang komunikasi nirkabel.

Akhir kata, kami mengucapkan terima kasih kepada semua pihak yang telah mendukung terselesainya buku ini. Semoga buku ini dapat memberi manfaat yang sebesar-besarnya bagi para pembaca dan menjadi bagian penting dalam perkembangan ilmu pengetahuan dan teknologi komunikasi nirkabel.

Penulis Semarang, 25 Januari 2025

Dr. Eng, Ir. Irfan Mujahidin, S.T., M.T., M.Sc., IPP

DAFTAR ISI

КАТА	PENGANTAR	i
DAFT	AR ISI	iii
DAFT	AR GAMBAR	v
BAB 1	INSTRUMEN IMPLEMENTASI	1
A.	Instrumen Ukur	2
B.	Instrumen Desain	10
BAB 2	DESAIN SALURAN TRANSMISI MIKROSTIP	23
A.	Landasan Teori	
B.	Alat dan Bahan	
C.	Langkah Eksperimen	
D.	Hasil Eksperimen	47
E.	Analisis	52
F.	Kesimpulan	53
BAB 3	DESAIN KONVERTER IMPEDANSI MULTI	
SEGM	ENT	55
A.	Landasan Teori	55
B.	Alat dan Bahan	59
C.	Langkah Kerja	60
D.	Hasil Eksperimen	70
E.	Analisa	71
F.	Kesimpulan	72
BAB 4	PEMBAGI DAYA WILKINSON	73
A.	Landasan Teori	
B.	Alat dan Bahan	83

C.	Langkah Kerja	
D.	Hasil Eksperimen	
E.	Analisa	
F.	Kesimpulan	
BAB 5	FILTER BAND PASS JALUR MIKROSTIP	
BERP	ASANGAN	111
А.	Landasan Teori	
B.	Alat dan Bahan	
C.	Langkah Kerja	
D.	Hasil Eksperimen	
E.	Analisa	
F.	Kesimpulan	
DAFTAR PUSTAKA137		
PROFIL PENULIS141		

DAFTAR GAMBAR

Gambar	1.1 Pengaturan pengukuran dasar yang terdiri dari perangkat yang diuji yang tertanam dalam komponen instrument yang terhubung ke VNa	2
Gambar	1.2 Tampilan Vecto Network Analyzer	3
Gambar	1.3 Tampilan Tombol VNA	4
Gambar	1.4 Tampilan tombol fungsi pada Vector Network Anlyzer	5
Gambar	1.5 Tampilan tombol fungsi pada Vector Network Anlyzer	6
Gambar	1.6 Tampilan socket DUT pada alat Vector Network Analyzer	7
Gambar	1.7 Tampilan Kalibrasi pada Vector Network Analyzer	9
Gambar	1.8 Tampilan Kalibrasi pada Vector Network Analyzer 1	0
Gambar	1.9 Tampilan New Workspace Wizard pada ADS Ketika ingin membuat ruang kerja1	5
Gambar	1.10 Tampilan pemilihan Libraries sesuai kebutuan dalam pekerjaal desain aktual	6

Gambar	1.0.11 Tampilan memberi nama untuk Workspace pada ADS 2011
Gambar	1.12 Tampilan pemilihan Unit yang diinginkan selama desain pada ADS 201117
Gambar	1.13 Tampilan Workspace setelah dibuat pada ADS 18
Gambar	1.14 Tampilan membuat schematic baru di dalam Workspace pada ADS 19
Gambar	1.15 Tampilan schematic baru dibuat pada ADS 2011
Gambar	1.16 Tampilan Dasar menunjukan Perpustakaan Lumped with Artwork
Gambar	1.17 Tampilan rangkaian yang akan di desain pada ADS 20
Gambar	1.18 Tampilan Dasar menunjukan Perpustakaan Lumped with Artwork 21
Gambar	1.19 Tampilan hasil simulasi yang didapatkan setelah konfigurasi pada ADS
Gambar	1.20 Tampilan jendela utama pada Workspace untuk melihat sel schematic dan tampilan data
Gambar	2.1 Tampilan membuat Workspace baru untuk memulai projek pada ADS
Gambar	2.2 Tampilan New Schematic setelah membuat Workspace baru pada ADS
Gambar L	2.3 Tampilan beberapa Fungsi yang menonjolkan .ineCalc dari Tools "Layout" pada ADS
Gambar d	2.4 Tampilan Konfigurasi LineCalc untuk spesifikasi lesain yang di inginkan
Gambar d b	2.5 Tampilan Konfigurasi LineCalc setelah di konfigurasi lengan tujuan memastikan jalur mikrostrip dapat perfungsi dengan baik pada frekuensi tinggi

Gambar	2.6 Tampilan Konfigurasi LineCalc dengan frekuensi1000Ghz, lebar 3.044mm, panjang 104.85, dan tinggi1.6mm
Gambar	2.7 Tampilan Konfigurasi LineCalc dengan frekuensi2000Ghz, lebar 0.144mm, panjang 52.49, dan tinggi0.08mm
Gambar	2.8 Tampilan Parts ketika mencari Tlines Microstrip pada ADS
Gambar	2.9 Tampilan setelah memilih parts yang dibutuhkan
Gambar	2.10 Tampilan Parts ketika mencari Simulation S-Param pada ADS
Gambar	2.11 Tampilan setelah memilih parts yang dibutuhkan
Gambar	2.12 Tampilan Parts ketika mencari MLIN pada library Simulation-S_param dan mengubah konfigurasi pada parts tersebut
Gambar	2.13 Tampilan ketika rangkaian sudah selesai dan siap di simulasi
Gambar	2.14 Tampilan proses ketika sedang di simulasi
Gambar	2.15 Tampilan ketika proses sudah selesai dan cell siap di konfig
Gambar	2.16 Tampilan ketika Rectangular port ditambahkan pada board untuk mengukur parameter_S dari rangkaian 37
Gambar	2.17 Tampilan ketika konfigurasi Grafik yang akan di hasilkan dengan menunjukkan efisiensi transmisi dan pantulan daya
Gambar	2.18 Tampilan setelah di konfigurasi pada menu awal

Gambar	2.19 Tampilan ketika konfigurasi untuk menandai titik- titik penting pada grafik untuk mengetahui frekuensi dan level dB yang relevan
Gambar	2.20 Tampilan ketika akan konfigurasi tools Smith pada pojok kiri layar
Gambar	2.21 Tampilan konfigurasi sesuai dengan materi jobsheet
Gambar	2.22 Tampilan konfigurasi grafik pada bentuk ke-2 40
Gambar	2.23 Proses pemotongan PCB 41
Gambar	2.24 Gambar kertas yang sudah di print menempel pada PCB
Gambar	2.25 Gambar sedang menyetrika gambar print dengan PCB dengan maksud gambar dapat tergambar jelas pada PCB
Gambar	2.26 Proses memasukan PCB kedalam cairan khusus 42
Gambar	2.27 Proses menyiapkan cairan keras yang sudah disiapkan
Gambar	2.28 Proses PCB sedang direndam pada cairan khusus
Gambar	2.29 Hasil pada PCB yang sudah selesai di Fabrikasi 44
Gambar	2.30 Tampilan awal dari NANOVNA-SAVER
Gambar	2.31 Tampilan ketika ingin menghubungkan perangkat NanoVNA ke laptop
Gambar	2.32 Konfigurasi Frequency pada NanoVNA
Gambar	2.33 Proses pemberian marker pada frequency yang diinginkan
Gambar	2.34 Hasil pengukuran Return Loss dan vswr dari data yang diberikan
Gambar	2.35 Hasil Fabrikasi pada komponen

Gambar	2.36 Hasil simulasi pada Frequency pada komponen	7
Gambar	2.37 Grafik Jalur Mikrostrip 50 Ohm merupakan hasil pengukuran menggunakan Nano VNA	8
Gambar	2.38 design λ / 4 Mode Open 4	8
Gambar	2.39 Fabrikasi - λ / 4 Mode Open 4	9
Gambar	2.40 design λ / 2 Mode Open	9
Gambar	2.41 Fabrikasi - λ / 2 Mode Open	9
Gambar	2.42 Tampilan Respon Frequency Pernadinagan antara Pengukuran (Mea) dan Simulasi (Sim) pada 2.4Ghz $\lambda/4$ mode Open	0
Gambar	2.43 Tampilan Respon Frequency Pernadinagan antara Pengukuran (Mea) dan Simulasi (Sim) pada 2.4Ghz $\lambda/2$ mode Open	0
Gambar	2.44 design λ / 4 Short Mode	0
Gambar	2.45 Fabrikasi - λ / 4 Mode Open	1
Gambar	2.46 design λ / 2 Short Mode	1
Gambar	2.47 Fabrikasi - λ / 2 Mode Open	1
Gambar	2.48 Tampilan Respon Frequency Pernadinagan antara Pengukuran (Mea) dan Simulasi (Sim) pada 2.4Ghz $\lambda/4$ mode Short	2
Gambar	2.49 Tampilan Respon Frequency Pernadinagan antara Pengukuran (Mea) dan Simulasi (Sim) pada 2.4Ghz $\lambda/2$ mode Short	2
Gambar	3.1 Tampilan jalur Transmisi Segmented	6
Gambar	3.2 Tampilan rangkaian yang akan di simulasi 6	1
Gambar	3.3 Proses untuk mensimulasikan alat, dengan cara Generate Layout	1
Gambar	3.4 Tampilan desain yang sudah dibuat pada ADS	2

Gambar	3.5 Tampilan menu tools untuk menggabungkan layout simulasi
Gambar	3.6 Proses meng-export file desain menuju file autocad.63
Gambar	3.7 Pengukuran PCB untuk mendapatkan ukuran yang pas
Gambar	3.8 Proses pemotongan PCB untuk membentuk PCB yang rapi
Gambar	3.9 Menempelkan hasil print ke bahan PCB yang sudah di potong
Gambar	3.10 Proses menempelkan kertas dengan PCB agar tidak mudah lepas ketika proses berlanjut
Gambar	3.11 Proses pembersihan Kertas PCB
Gambar	3.12 Proses menyiapkan cairan khusus untuk membentuk tembaga PCB
Gambar	3.13 Proses menggerakkan PCB naik turun agar dapat terbentuk secara perlahan
Gambar	3.14 Tampilan hasil Fabrikasi 67
Gambar	3.15 Tampilan awal dari NANOVNA-SAVER
Gambar	3.16 Tampilan menu menghubungkan perangkat NanoVNA ke laptop
Gambar	3.17 Tampilan Sweep Control untuk menentukan center frequency serta rentang frequency
Gambar	3.18 Tampilan marker pada frekuensi yang ingin ditentukan sebagai rentang frequency
Gambar	3.19 Tampilan hasil pengukuran dari software NANOVNA-SAVER
Gambar	3.20 Hasil Eksperimen
Gambar	3.21 Hasil Eksperimen Grafik S11 > -15 dB 71
Gambar	4.1 Bentuk Fisik Wilkinson Power Divider

Gambar	4.2 Rangkaian Wilkinson Power Divider
Gambar	4.3 Rangkaian Even-Mode77
Gambar	4.4 Rangkaian Even-Mode78
Gambar	4.5 Rangkaian Odd-Mode 79
Gambar	4.6 Rangkaian Odd-Mode 81
Gambar	4.7 Rangkaian Three-section Wilkinson Power Divider. 82
Gambar	4.8 Bahan komponen yang akan digunakan untuk rangkaian
Gambar	4.9 Tampilan rangkaian setelah dirangkai
Gambar	4.10 Tampilan akan melakukan simulasi dengan cara generate layout
Gambar	4.11 Hasil Rangkaian setelah di simulasi
Gambar	4.12 Proses menggabungkan bentuk rangkaian tersebut menjadi satu
Gambar	4.13 Tampilan tools yang akan mengkonfigurasi Resolusi Penyesuaian
Gambar	4.14 Proses konfigurasi Preferensi Layout untuk mengubah Snap Grid "X" dan "Y" pada spacing
Gambar	4.15 Tampilan fungsi untuk buka titik kunci objek
Gambar	4.16 Proses untuk menghaluskan hasil rangkaian dengan cara Flatten pada komponen
Gambar	4.17 Proses menggambar ulang sudut dengan tools Poligon
Gambar	4.18 Tampilan hasil setelah diperbaiki sudut dengan tools Poligon
Gambar	4.19 Proses untuk konfigurasi pada Substrate
Gambar	4.20 Proses konfigurasi Layout Layer pada Substrate 90
Gambar	4.21 Proses menambahkan Port pada beberapa titik penting

Gambar	4.22 Tampilan Port pada titik penting
Gambar	4.23 Tampilan Port pada titik penting
Gambar	4.24 Tampilan Akhir setelah menambahkan Port
Gambar	4.25 Konfigurasi Port type menjadi Internal
Gambar	4.26 Tampilan Konfigurasi Port Type
Gambar	4.27 Proses mengubah Mesh Frequency menjadi 10Ghz
Gambar	4.28 Tampilan menu konfigurasi Mesh Frequency menjadi 10Ghz
Gambar	4.29 Proses konfigurasi simulasi pada S-Parameters 94
Gambar	4.30 Tampilan menu S-Parameters dan konfigurasi S- Parameters
Gambar	4.31 Aktivitas meng-export file desain menjadi file Autocad
Gambar	4.32 Tampilan ketika file dibuka pada Autocad
Gambar	4.33 Proses pemotongan PCB sesuai ukuran
Gambar	4.34 Menempelkan Print kepada PCB
Gambar	4.35 Proses menempelkan kertas dengan PCB gunakan Setrik
Gambar	4.36 Proses mendinginkan PCB dengan memasukan ke dalam air
Gambar	4.37 Proses penggabungan cairan khusus untuk membentuk tembaga PCB
Gambar	4.38 Proses pembentukan tembaga PCB dengan cara digeser berulang
Gambar	4.39 Hasil pembentukan Tembaga PCB
Gambar	4.40 Hasil setelah semua connector di solder100
Gambar	4.41 Tampilan awal dari NANOVNA-SAVER101

Gambar	4.42 Menu tampilan ketika mengubungkan perangkat NanoVNA ke laptop101
Gambar	4.43 Tampilan menu untuk konfigurasi Sweep Control termasuk center frequency, dan rentang frequency102
Gambar	4.44 Pemberian maker pada frequency yang diinginkan
Gambar	4.45 Hasil pengukuran pada software NanoVNA- SAVER
Gambar	4.46 Hasil Eksperimen Fabrikasi103
Gambar S	4.47 Hasil pengukuran pada software NanoVNA- AVER104
Gambar	4.48 Hasil Grafik Jumlah Refleksi Setiap Port 1104
Gambar	4.49 Hasil Grafik Jumlah Refleksi Setiap Port 2105
Gambar	4.50 Hasil Grafik Jumlah Refleksi Setiap Port 2105
Gambar	4.51 Hasil Grafik Isolasi antara dua port106
Gambar	4.52 Hasil Grafik Kehilangan daya keluaran S21106
Gambar	4.53 Hasil Grafik Kehilangan daya keluaran S22107
Gambar	4.54 Hasil Grafik Ketidakseimbangan fase kurang dari dua fase
Gambar	5.1 Tabel dari 10 Canonical Coupled Line Circuits113
Gambar	5.2 Gambar MCFIL dan Equivalent Circuit
Gambar	5.3 Gambar Coupled-Line Bandpass Filters119
Gambar	5.4 Tampilan ADS dalam membuat New Workspace121
Gambar	5.5 Bahan untuk membuat Rangkaian122
Gambar i	0.6 Rangkaian setelah dirangkai akan terlihat seperti ni122
Gambar L	5.7 Simulasikan Rangkaian dengan Generate ayout123

Gambar	5.8 Gambar Simulasi Rangkaian dalam Layout akan terlihat seperti berikut123
Gambar	5.9 Proses menggabungkan semua bentuk menjadi satu kesatuan
Gambar	5.10 Foto hasil Rangkaian setelah digabungkan menjadi satu124
Gambar	5.11 Proses meng-export file desain menjadi file Autocad
Gambar	5.12 Tampilan hasil setelah diexport akan terlihat seperti ini
Gambar	5.13 Proses pemotongan PCB125
Gambar	5.14 Pembersihan PCB dengan gunakan kertas amplas
Gambar	5.15 Proses Penempelan Kertas dengan PCB sebagai bentuk dasar Tembaga PCB126
Gambar	5.16 Proses pencampuran Cairan khusus untuk pembentukan Tembaga PCB127
Gambar	5.17 Proses pembentukan PCB dengan cara digeser berulang
Gambar	5.18 Hasil Fabrikasi Etching128
Gambar	5.19 Tampilan awal dari NANOVNA-SAVER129
Gambar	5.20 Tampilan menu menghubungkan perangkat ke laptop129
Gambar	5.21 Tampilan menu konfigurasi Sweep Control Center Frequency dan Rentang Frequency130
Gambar	5.22 Pilih marker pada frequency yang diinginkan130
Gambar	5.23 Hasil pengukuran pada software NanoVNA- SAVER
Gambar	5.24 Grafik Pengukuran Return Loss
Gambar	5.25 Grafik pengukuran Insertion Loss

Gambar 5.26 Grafik Pengukuran return loss dan Insertion Loss	
Eksperimen 1	133
Gambar 5.27 Grafik Pengukuran return loss dan Insertion Loss	
Eksperimen 2	133

DAFTAR PUSTAKA

Advanced Digital System Design, KeySight Corp. (2011). *Advanced Digital System Design.* In Advanced Digital System Design.

- Balanis, C. A. (2016). [Book] *Antenna theory: Analysis and Design*. WILEY Book.
- Balanis, C. E. (2005). Antenna Theory: Analysis and Design, 3rd Edition - Constantine A. Balanis. In Book. https://doi.org/10.1049/ep.1982.0113
- Ghione, G., & Pirola, M. (2017). *Directional Couplers and Power Dividers.* In Microwave Electronics. https://doi.org/10.1017/9781316756171.005
- Lu, P., Song, C., & Huang, K. M. (2020). A Two-Port Multipolarization Rectenna with Orthogonal Hybrid Coupler for Simultaneous Wireless Information and Power Transfer (SWIPT). IEEE Transactions on Antennas and Propagation, 68(10). https://doi.org/10.1109/TAP.2020.2993096
- Mujahidin, I. (2018). *Directional Couplers*. In http://antenapropagasi.blogspot.com/2018/11/directionalcouplers.html (Issue 1).
- Mujahidin, I. (2020a). A Compct 5.8 GHz CPW Double Square Edge Antenna With BPF Stepped Impedance Resonator. PRotek :

Jurnal Ilmiah Teknik Elektro. https://doi.org/10.33387/protk.v7i2.2026

- Mujahidin, I. (2020b). A Compct 5.8 GHz CPW Double Square Edge Antenna With BPF Stepped Impedance Resonator. PRotek : *Jurnal Ilmiah Teknik Elektro.* https://doi.org/10.33387/protk.v7i2.2026
- Mujahidin, I., & Kitagawa, A. (2021). *CP Antenna with 2 × 4 Hybrid Coupler for Wireless Sensing and Hybrid RF Solar Energy Harvesting.* Sensors (Switzerland), 21, 1–20. https://doi.org/10.3390/s21227721
- Mujahidin, I., & Kitagawa, A. (2023). *Ring slot CP antenna for the hybrid electromagnetic solar energy harvesting and IoT application.* Telkomnika (Telecommunication Computing Electronics and Control), 21(2), 290–301. https://doi.org/10.12928/TELKOMNIKA.v21i2.24739
- Pozar, D. M. (2002). *Microwave and RF wireless systems : Solution manual*. In Ieee Microwave Magazine (Vol. 3, Issue 1).
- Pozar, D. M. (2014). *Microwave Engineering 4th Ed*. In Igarss 2014. https://doi.org/10.1007/s13398-014-0173-7.2
- Pozar, D. M. (2017). *Microwave engineering* / David M. Pozar. In Microwave engineering.
- Prasetya, D. A., & Mujahidin, I. (2020a). 2.4 GHz Double Loop Antenna with Hybrid Branch-Line 90-Degree Coupler for Widespread Wireless Sensor. https://doi.org/10.1109/eeccis49483.2020.9263477
- Prasetya, D. A., & Mujahidin, I. (2020b). 2.4 GHz Double Loop Antenna with Hybrid Branch-Line 90-Degree Coupler for Widespread Wireless Sensor. 2020 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 298–302. https://doi.org/10.1109/EECCIS49483.2020.9263477

Rohde & Schwarz GmbH & Co. (2015). Vector network analyzers. RF and Microwave Measurement Techniques.

Tanaka, Y., Kanai, K., Hasaba, R., Sato, H., Koyanagi, Y., Ikeda, T., Tani, H., Kajiwara, S., & Shinohara, N. (2019). A Study of Improve Efficiency of Broad-Angle Rectenna Using Hybrid Coupler. 2019 IEEE Wireless Power Transfer Conference, WPTC 2019.
https://doi.org/10.1100/WPTC45512.2010.0055514

https://doi.org/10.1109/WPTC45513.2019.9055514

140 – Dr. Eng, Ir. Irfan Mujahidin., S.T., M.T., M.Sc. IPP.

PROFIL PENULIS

Dr. Eng, Ir. Irfan Mujahidin., S.T., M.T., M.Sc. IPP.

adalah seorang Penulis dosen studi Teknik program telekomunikasi. Politeknik Negeri Semarang. Penulis lahir di Banyuwangi, Iawa Timur. Indonesia, pada tahun 1992. Latar Pendidikan penulis adalah memperoleh gelar doctoral di Teknik Elektro dan Ilmu Komputer di Universitas Kanazawa, Jepang, pada tahun 2022. Penulis memperoleh gelar Sarjana Teknik Elektro dari Universitas

Brawijaya, Malang, Indonesia, pada tahun 2015. Master of Science dari Institut Teknik Komunikasi, National Sun Yat-sen University, Kaohsiung, Taiwan, Republik Tiongkok, pada tahun 2018 dan gelar profesi insinyur pada tahun 2021 sebagai praktisi dan peneliti bidang antenna dan propagasi. Minat penelitiannya saat ini meliputi desain antena pada pemanenan energi RF, jaringan sensor nirkabel, aplikasi Internet-of-Things, transmisi daya nirkabel, dan desain sirkuit RF. Lebih lengakap bisa di telusuri memlalui akun repositori publikasi berikut : D 0000-0002-5451-941X, 🛛 4028CH8AAAAJ, 🖾 57163783300, C AAM-4798-2020.

Penulis dapat dihubungi di email: irfan.mujahidin@polines.ac.id